138 research outputs found

    Demonstration of two novel methods for predicting functional siRNA efficiency

    Get PDF
    BACKGROUND: siRNAs are small RNAs that serve as sequence determinants during the gene silencing process called RNA interference (RNAi). It is well know that siRNA efficiency is crucial in the RNAi pathway, and the siRNA efficiency for targeting different sites of a specific gene varies greatly. Therefore, there is high demand for reliable siRNAs prediction tools and for the design methods able to pick up high silencing potential siRNAs. RESULTS: In this paper, two systems have been established for the prediction of functional siRNAs: (1) a statistical model based on sequence information and (2) a machine learning model based on three features of siRNA sequences, namely binary description, thermodynamic profile and nucleotide composition. Both of the two methods show high performance on the two datasets we have constructed for training the model. CONCLUSION: Both of the two methods studied in this paper emphasize the importance of sequence information for the prediction of functional siRNAs. The way of denoting a bio-sequence by binary system in mathematical language might be helpful in other analysis work associated with fixed-length bio-sequence

    RDAD: A Machine Learning System to Support Phenotype-Based Rare Disease Diagnosis

    Get PDF
    DNA sequencing has allowed for the discovery of the genetic cause for a considerable number of diseases, paving the way for new disease diagnostics. However, due to the lack of clinical samples and records, the molecular cause for rare diseases is always hard to identify, significantly limiting the number of rare Mendelian diseases diagnosed through sequencing technologies. Clinical phenotype information therefore becomes a major resource to diagnose rare diseases. In this article, we adopted both a phenotypic similarity method and a machine learning method to build four diagnostic models to support rare disease diagnosis. All the diagnostic models were validated using the real medical records from RAMEDIS. Each model provides a list of the top 10 candidate diseases as the prediction outcome and the results showed that all models had a high diagnostic precision (≥98%) with the highest recall reaching up to 95% while the models with machine learning methods showed the best performance. To promote effective diagnosis for rare disease in clinical application, we developed the phenotype-based Rare Disease Auxiliary Diagnosis system (RDAD) to assist clinicians in diagnosing rare diseases with the above four diagnostic models. The system is freely accessible through http://www.unimd.org/RDAD/

    Nucleosome structure incorporated histone acetylation site prediction in arabidopsis thaliana

    Get PDF
    Background Acetylation is a crucial post-translational modification for histones, and plays a key role in gene expression regulation. Due to limited data and lack of a clear acetylation consensus sequence, a few researches have focused on prediction of lysine acetylation sites. Several systematic prediction studies have been conducted for human and yeast, but less for Arabidopsis thaliana. Results Concerning the insufficient observation on acetylation site, we analyzed contributions of the peptide-alignment-based distance definition and 3D structure factors in acetylation prediction. We found that traditional structure contributes little to acetylation site prediction. Identified acetylation sites of histones in Arabidopsis thaliana are conserved and cross predictable with that of human by peptide based methods. However, the predicted specificity is overestimated, because of the existence of non-observed acetylable site. Here, by performing a complete exploration on the factors that affect the acetylability of lysines in histones, we focused on the relative position of lysine at nucleosome level, and defined a new structure feature to promote the performance in predicting the acetylability of all the histone lysines in A. thaliana. Conclusion We found a new spacial correlated acetylation factor, and defined a ε-N spacial location based feature, which contains five core spacial ellipsoid wired areas. By incorporating the new feature, the performance of predicting the acetylability of all the histone lysines in A. Thaliana was promoted, in which the previous mispredicted acetylable lysines were corrected by comparing to the peptide-based prediction

    Single-Cell RNA-Seq Technologies and Related Computational Data Analysis

    Get PDF
    Single-cell RNA sequencing (scRNA-seq) technologies allow the dissection of gene expression at single-cell resolution, which greatly revolutionizes transcriptomic studies. A number of scRNA-seq protocols have been developed, and these methods possess their unique features with distinct advantages and disadvantages. Due to technical limitations and biological factors, scRNA-seq data are noisier and more complex than bulk RNA-seq data. The high variability of scRNA-seq data raises computational challenges in data analysis. Although an increasing number of bioinformatics methods are proposed for analyzing and interpreting scRNA-seq data, novel algorithms are required to ensure the accuracy and reproducibility of results. In this review, we provide an overview of currently available single-cell isolation protocols and scRNA-seq technologies, and discuss the methods for diverse scRNA-seq data analyses including quality control, read mapping, gene expression quantification, batch effect correction, normalization, imputation, dimensionality reduction, feature selection, cell clustering, trajectory inference, differential expression calling, alternative splicing, allelic expression, and gene regulatory network reconstruction. Further, we outline the prospective development and applications of scRNA-seq technologies

    Exploring virus relationships based on virus-host protein-protein interaction network

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Currently, several systems have been proposed to classify viruses and indicate the relationships between different ones, though each system has its limitations because of the complexity of viral origins and their rapid evolution rate. We hereby propose a new method to explore the relationships between different viruses.</p> <p>Method</p> <p>A new method, which is based on the virus-host protein-protein interaction network, is proposed in this paper to categorize viruses. The distances between 114 human viruses, including 48 HIV-1 and HIV-2 viruses, are estimated according to the protein-protein interaction network between these viruses and humans.</p> <p>Conclusions/significance</p> <p>The results demonstrated that our method can disclose not only relationships consistent with the taxonomic results of currently used systems of classification but also the potential relationships that the current virus classification systems have not revealed. Moreover, the method points to a new direction where the functional relationships between viruses and hosts can be used to explore the virus relationships on a systematic level.</p

    Insights into the Coupling of Duplication Events and Macroevolution from an Age Profile of Animal Transmembrane Gene Families

    Get PDF
    The evolution of new gene families subsequent to gene duplication may be coupled to the fluctuation of population and environment variables. Based upon that, we presented a systematic analysis of the animal transmembrane gene duplication events on a macroevolutionary scale by integrating the palaeontology repository. The age of duplication events was calculated by maximum likelihood method, and the age distribution was estimated by density histogram and normal kernel density estimation. We showed that the density of the duplicates displays a positive correlation with the estimates of maximum number of cell types of common ancestors, and the oxidation events played a key role in the major transitions of this density trace. Next, we focused on the Phanerozoic phase, during which more macroevolution data are available. The pulse mass extinction timepoints coincide with the local peaks of the age distribution, suggesting that the transmembrane gene duplicates fixed frequently when the environment changed dramatically. Moreover, a 61-million-year cycle is the most possible cycle in this phase by spectral analysis, which is consistent with the cycles recently detected in biodiversity. Our data thus elucidate a strong coupling of duplication events and macroevolution; furthermore, our method also provides a new way to address these questions

    Maximum predictive power of the microarray-based models for clinical outcomes is limited by correlation between endpoint and gene expression profile

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microarray data have been used for gene signature selection to predict clinical outcomes. Many studies have attempted to identify factors that affect models' performance with only little success. Fine-tuning of model parameters and optimizing each step of the modeling process often results in over-fitting problems without improving performance.</p> <p>Results</p> <p>We propose a quantitative measurement, termed consistency degree, to detect the correlation between disease endpoint and gene expression profile. Different endpoints were shown to have different consistency degrees to gene expression profiles. The validity of this measurement to estimate the consistency was tested with significance at a p-value less than 2.2e-16 for all of the studied endpoints. According to the consistency degree score, overall survival milestone outcome of multiple myeloma was proposed to extend from 730 days to 1561 days, which is more consistent with gene expression profile.</p> <p>Conclusion</p> <p>For various clinical endpoints, the maximum predictive powers of different microarray-based models are limited by the correlation between endpoint and gene expression profile of disease samples as indicated by the consistency degree score. In addition, previous defined clinical outcomes can also be reassessed and refined more coherent according to related disease gene expression profile. Our findings point to an entirely new direction for assessing the microarray-based predictive models and provide important information to gene signature based clinical applications.</p

    Global protein interactome exploration through mining genome-scale data in Arabidopsis thaliana

    Get PDF
    BackgroundMany essential cellular processes, such as cellular metabolism, transport, cellular metabolism and most regulatory mechanisms, rely on physical interactions between proteins. Genome-wide protein interactome networks of yeast, human and several other animal organisms have already been established, but this kind of network reminds to be established in the field of plant. ResultsWe first predicted the protein protein interaction in Arabidopsis thaliana with methods, including ortholog, SSBP, gene fusion, gene neighbor, phylogenetic profile, coexpression, protein domain, and used Naïve Bayesian approach next to integrate the results of these methods and text mining data to build a genome-wide protein interactome network. Furthermore, we adopted the data of GO enrichment analysis, pathway, published literature to validate our network, the confirmation of our network shows the feasibility of using our network to predict protein function and other usage. ConclusionsOur interactome is a comprehensive genome-wide network in the organism plant Arabidopsis thaliana, and provides a rich resource for researchers in related field to study the protein function, molecular interaction and potential mechanism under different conditions

    InPrePPI: an integrated evaluation method based on genomic context for predicting protein-protein interactions in prokaryotic genomes

    Get PDF
    Background Although many genomic features have been used in the prediction of protein-protein interactions (PPIs), frequently only one is used in a computational method. After realizing the limited power in the prediction using only one genomic feature, investigators are now moving toward integration. So far, there have been few integration studies for PPI prediction; one failed to yield appreciable improvement of prediction and the others did not conduct performance comparison. It remains unclear whether an integration of multiple genomic features can improve the PPI prediction and, if it can, how to integrate these features. Results In this study, we first performed a systematic evaluation on the PPI prediction in Escherichia coli (E. coli) by four genomic context based methods: the phylogenetic profile method, the gene cluster method, the gene fusion method, and the gene neighbor method. The number of predicted PPIs and the average degree in the predicted PPI networks varied greatly among the four methods. Further, no method outperformed the others when we tested using three well-defined positive datasets from the KEGG, EcoCyc, and DIP databases. Based on these comparisons, we developed a novel integrated method, named InPrePPI. InPrePPI first normalizes the AC value (an integrated value of the accuracy and coverage) of each method using three positive datasets, then calculates a weight for each method, and finally uses the weight to calculate an integrated score for each protein pair predicted by the four genomic context based methods. We demonstrate that InPrePPI outperforms each of the four individual methods and, in general, the other two existing integrated methods: the joint observation method and the integrated prediction method in STRING. These four methods and InPrePPI are implemented in a user-friendly web interface. Conclusion This study evaluated the PPI prediction by four genomic context based methods, and presents an integrated evaluation method that shows better performance in E. coli
    corecore